Universitas Gadjah Mada Nama Instansi
Universitas Gadjah Mada
  • Beranda
  • Tutorial
  • Latihan Dasar-Dasar Topologi 2 (Persekitaran)

Latihan Dasar-Dasar Topologi 2 (Persekitaran)

  • Tutorial, Tutorial Topologi
  • 18 October 2020, 10.51
  • Oleh: dewiks
  • 0

[et_pb_section fb_built=”1″ next_background_color=”#ffffff” admin_label=”Header” _builder_version=”4.2.2″ background_color=”#f8f9fa” bottom_divider_style=”curve”][et_pb_row _builder_version=”4.3.2″ locked=”off”][et_pb_column type=”4_4″ saved_specialty_column_type=”1_2″ _builder_version=”4.2.2″][et_pb_text _builder_version=”4.4.2″ text_font=”PT Sans||||||||” text_font_size=”16px” text_line_height=”1.8em” header_font=”Playfair Display|700|||||||” header_font_size=”50px” header_line_height=”1.1em” text_orientation=”center” header_font_size_tablet=”40px” header_font_size_phone=”30px” header_font_size_last_edited=”on|phone”]

Latihan Persekitaran-ε

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built=”1″ admin_label=”Blog” _builder_version=”4.2.2″][et_pb_row _builder_version=”4.4.2″][et_pb_column type=”4_4″ _builder_version=”4.4.2″][et_pb_text _builder_version=”4.4.2″]

Soal-soal berikut merupakan soal mengenai persekitaran dari suatu titik. Untuk mengakses materi mengenai persekitaran – ε, silakan kunjungi laman berikut.

[/et_pb_text][et_pb_accordion _builder_version=”4.4.2″ positioning=”relative” width=”81.2%” custom_margin=”|-53px||97px||” animation_style=”fade” animation_duration=”1100ms” animation_speed_curve=”ease-out” locked=”off”][et_pb_accordion_item title=”Soal” open=”on” _builder_version=”4.4.2″ box_shadow_style=”preset1″]

Tunjukkan bahwa setiap persekitaran-$\varepsilon$ terbuka di $\mathbb{R}$.

[/et_pb_accordion_item][/et_pb_accordion][/et_pb_column][/et_pb_row][et_pb_row _builder_version=”4.4.2″][et_pb_column type=”4_4″ _builder_version=”4.4.2″][et_pb_text _builder_version=”4.4.2″]

Jawaban:

 

Diberikan $N_\varepsilon(a)$ persekitaran-$\varepsilon$ dari $a$. Untuk menunjukkan $N_\varepsilon(a)$ terbuka akan ditunjukkan untuk sebarang $x \in N_\varepsilon(a)$ terdapat $\delta_x>0$ sehingga $N_{\delta_x}(x) \subseteq N_\varepsilon(a)$. Diambil sebarang $x \in N_\varepsilon(a)$, diperolehDiberikan $N_\varepsilon(a)$ persekitaran-$\varepsilon$ dari $a$. Untuk menunjukkan $N_\varepsilon(a)$ terbuka akan ditunjukkan untuk sebarang $x \in N_\varepsilon(a)$ terdapat $\delta_x>0$ sehingga $N_{\delta_x}(x) \subseteq N_\varepsilon(a)$. Diambil sebarang $x \in N_\varepsilon(a)$, diperoleh\[|x-a| < \varepsilon.\]Diambil $\delta_x= \frac{1}{3}\min\{\varepsilon-|x-a|, |x-a|\}$. Diperoleh $\delta >0$.\\Diambil $z \in N_{\delta_x}(x)$, maka $|x-z|< \delta_x$. Akibatnya,\[\begin{array}{lll}|z-a| &\leq |z-x|+|x-a|\\ &<\delta_x + |x-a|\\ &< (\varepsilon-|x-a|)+|x-a|\\ &< \varepsilon.\end{array}\]Berarti $z \in N_\varepsilon(a)$. Jadi, $N_\varepsilon(a)$ terbuka.

 

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built=”1″ custom_padding_last_edited=”off|tablet” admin_label=”Footer” _builder_version=”4.4.2″ background_enable_image=”off” background_size=”contain” background_position=”bottom_center” custom_margin=”||1px|||” custom_padding=”||0vw||false|false” custom_padding_tablet=”||||false|false” locked=”off”][et_pb_row custom_padding_last_edited=”on|tablet” _builder_version=”4.3.2″ background_image=”https://juviagift.com/wp-content/uploads/2020/06/bac-01.png” background_size=”contain” custom_padding=”160px|100px|100px|100px|false|true” custom_padding_tablet=”10px|40px|10px|40px|true|true” custom_padding_phone=”0px|0px|0px|0px|true|true”][et_pb_column type=”4_4″ _builder_version=”4.0.8″][et_pb_text _builder_version=”4.4.2″ text_font=”PT Sans||||||||” text_font_size=”16px” text_line_height=”1.8em” header_font=”Chilanka||||||||” header_text_align=”center” text_orientation=”center” max_width=”481px” custom_margin=”|210px||205px||” custom_padding=”|2px||1px||” locked=”off”]

Mari Belajar Bersama Kami!

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Tags: bilangan real sifat topologi topologi bilangan real

Leave A Comment Cancel reply

Your email address will not be published. Required fields are marked *

*

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Universitas Gadjah Mada

Alamat Instansi
Nomor Telepon Instansi
Email Instansi

© Universitas Gadjah Mada

KEBIJAKAN PRIVASI/PRIVACY POLICY